Generalized triangulations, pipe dreams, and simplicial spheres
نویسندگان
چکیده
We exhibit a canonical connection between maximal (0, 1)-fillings of a moon polyomino avoiding northeast chains of a given length and reduced pipe dreams of a certain permutation. Following this approach we show that the simplicial complex of such maximal fillings is a vertex-decomposable and thus a shellable sphere. In particular, this implies a positivity result for Schubert polynomials. For Ferrers shapes, we moreover construct a bijection to maximal fillings avoiding south-east chains of the same length which specializes to a bijection between k-triangulations of the n-gon and k-fans of Dyck paths. Using this, we translate a conjectured cyclic sieving phenomenon for ktriangulations with rotation to k-flagged tableaux with promotion. Résumé. Nous décrivons un lien canonique entre les (0, 1)-remplissages maximaux d’un polyomino-lune évitant les chaı̂nes Nord-Est d’une longueur donnée, et les “pipe dreams” réduits d’une certaine permutation. En suivant cette approche nous montrons que le complexe simplicial de tels remplissages maximaux est une sphère “vertex-decomposable” et donc “shellable”. En particulier, cela entraı̂ne un résultat de positivité sur les polynômes de Schubert. De plus, nous construisons, dans le cas des diagrammes de Ferrers, une bijection vers les remplissages maximaux évitant les chaı̂nes Sud-Est de même longueur, qui se spécialise en une bijection entre les k-triangulations d’un n-gone et les k-faisceaux de chemins de Dyck. A l’aide de celle-ci, nous traduisons une instance conjecturale du phénomène de tamis cyclique pour les k-triangulations avec rotation dans le cadre des tableaux k-marqués avec promotion.
منابع مشابه
Maximal Fillings of Moon Polyominoes, Simplicial Complexes, and Schubert Polynomials
We exhibit a canonical connection between maximal (0, 1)-fillings of a moon polyomino avoiding north-east chains of a given length and reduced pipe dreams of a certain permutation. Following this approach we show that the simplicial complex of such maximal fillings is a vertex-decomposable, and thus shellable, sphere. In particular, this implies a positivity result for Schubert polynomials. Mor...
متن کاملOn the Relationship between Pipe Dreams and Permutation Words
Pipe dreams represent permutations pictorially as a series of crossing pipes. Recent applications of pipe dreams include the calculation of Schubert polynomials, fillings of moon polyominoes, and in the combinatorics of antidiagonal simplicial complexes. These applications associate pipe dreams to words of elementary symmetric transpositions via a canonical mapping. However, this canonical mapp...
متن کاملReal Root Conjecture Fails for Five- and Higher-Dimensional Spheres
A construction of convex flag triangulations of five and higher dimensional spheres, whose h-polynomials fail to have only real roots, is given. We show that there is no such example in dimensions lower than five. A condition weaker than realrootedness is conjectured and some evidence is provided. Let the f-polynomial fX of a simplicial complex X be defined by the formula fX(t) := ∑
متن کاملfails for five and higher dimensional spheres
A construction of convex flag triangulations of five and higher dimensional spheres, whose h-polynomials fail to have only real roots, is given. We show that there is no such example in dimensions lower than five. A condition weaker than realrootedness is conjectured and some evidence is provided. Let the f-polynomial fX of a simplicial complex X be defined by the formula fX(t): = ∑
متن کاملA survey of subdivisions and local h-vectors
The enumerative theory of simplicial subdivisions (triangulations) of simplicial complexes was developed by Stanley in order to understand the effect of such subdivisions on the h-vector of a simplicial complex. A key role there is played by the concept of a local h-vector. This paper surveys some of the highlights of this theory and recent developments, concerning subdivisions of flag homology...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011